
PPoPP-2007 1

Show-stoppers for Transactional 
Memory

Dave Dice – blogs.sun.com/dave
J2SE Core Engineering 
SunLabs Scalable Synchronization Group
PPoPP Panel 2007-3-15



PPoPP-2007 2

Concurrency

• Here today
• Explicit thread-level parallelism

– not a future
– a remedy with side-effects
– brings hope of performance
– and promise of complexity
– end of the lay-z-boy programming era

(David Patterson)



PPoPP-2007 3

Human scalability

• Today:
– lots of available cores 
– small concurrency priesthood

• Programs – programmers
• Reduce complexity

– Eliminate common sources of errors
– Think sequentially, execute concurrently
– At least raise the abstraction level above 

locks



PPoPP-2007 4

TM Critique

• Restrictions (as of today)
– large/long transactions
– IO and irrevocable state

• Single-threaded latency ?
– yes, it’s important

• Missing infrastructure:
– debugging, performance profiling

• Open issues:
– atomicity, nesting, exceptions



PPoPP-2007 5

Better than locks ?

• Wish: synchronized (Lock) {…} 
• Not a drop-in-replacement
• decreased complexity; added constraints 
• Better but not good enough
• Transactions won’t displace locks

– incremental adoption
• We’ll end up with both

– lock-aware transactions?



PPoPP-2007 6

A useful addition?



PPoPP-2007 7

Shared Mutable State

• Minimize shared mutable state
• Locks and transactions : immutable view
• Eliminate shared data
• Message passing: MPI, Erlang, etc
• 1 thread per address space
• Same programming model inter- & intra-node
• Can’t express common concurrency bugs
• Can you express large systems?

– old-school distributed programming



PPoPP-2007 8

Where does this take us?

• Locks + transactions + message passing
• Keep the lock abstraction

– Transparently Commute to transactions 
– Revert to actual locks only as needed
– Complexity of coarse-grained locking
– Possibly better performance


